
978-1-5386-6195-6/18/$31.00 ©2018 IEEE

Hierarchical Behavior Annex: Towards an AADL
Functional Specification Extension

Jinmiao Xu
College of Computer Science and

Technology
Nanjing University of

Aeronautics and Astronautics
Nanjing, China

JinMiao_Xu@163.com

Zhibin Yang
College of Computer Science and

Technology
Nanjing University of

Aeronautics and Astronautics
Nanjing, China

yangzhibin168@163.com

Zhiqiu Huang
College of Computer Science and

Technology
Nanjing University of

Aeronautics and Astronautics
Nanjing, China

zqhuang@nuaa.edu.cn

Yong Zhou
College of Computer Science and

Technology
Nanjing University of

Aeronautics and Astronautics
Nanjing, China

zynuaa@nuaa.edu.cn

Chengwei Liu
College of Computer Science and

Technology
Nanjing University of

Aeronautics and Astronautics
Nanjing, China

Lei Xue
Shanghai Academy of

Space�ight Technology
Shanghai, China

jzgunking@163.com

Jean-Paul Bodeveix
IRIT

Université de Toulouse
Toulouse, France
bodeveix@irit.fr

Mamoun Filali
IRIT

Université de Toulouse
Toulouse, France

filali@irit.fr

Abstract—AADL is a modeling language to design and

analyze embedded real-time systems and is widely used to model
safety-critical systems. AADL describes the system models
hierarchically through components such as systems, processes,
and threads, etc. The Behavioral Annex is a supplement of AADL
in terms of functional behavior. It enables modeling component
and component interaction behavior in a state-machine-based
annex sublanguage. At present, there is no mechanism to
represent hierarchical automata in the behavioral annex.
However, this is a very important feature because industrial
complex systems are always described with concurrent and
composite states. Although we can model a system with AADL’s
own hierarchical description capabilities, it will result in a large
amount of threads. In actual development, a refinement process
is always needed before system synthesis, in which several
threads may be combined into one thread that has concurrent
and composite states. This paper proposes a hierarchical
extension of the AADL behavioral annex which is named HBA
(Hierarchical Behavior Annex). First, the formal syntax of HBA
is given, and then we formally define the semantics of HBA. We
propose a meta-model of HBA and implement its textual and
graphical editor in the OSATE environment. Finally, an
industrial case study is given to validate the approach.

Keywords—safety-critical systems, AADL (architecture analysis
and design language), hierarchical behavior annex, functional
specification

I. INTRODUCTION
Safety-Critical Systems are widely present in fields such as

aerospace, communications, nuclear industry, and automotive
electronics. As functional and non-functional requirements
continue to be extended, it dramatically increases the
complexity of the systems. How to design and implement
high-quality, safety-critical real-time systems and effectively
control development time and costs is a common challenge for
both academia and industry. Recently, Model-Driven
Development (MDD) has become an important method for the

design and development of safety-critical systems [1].
AADL (Architecture Analysis and Design Language) [2] [3]

is both a textual and graphical language with component-
based modeling concepts specifically designed to represent
embedded software systems. AADL provides data and
subprogram components organized into packages to abstractly
represent application source code that is implemented in any
programming language (such as Java, C, or Ada) or in an
application design language (such as Simulink for control
system components). AADL provides thread, thread groups,
and process to represent concurrent tasks executing in
protected address spaces (time and space partitioning) and
interacting through ports, shared data components, and service
call to represent the software runtime architecture. The
dynamic of the runtime architecture are captured through
mode state machines at different levels of the component
hierarchy to present operational modes, dynamic changes to
fault-tolerant configurations, and component behavior. In
addition, the AADL standard provides well-defined execution
semantics for task execution, communication timing, and
mode changes using hybrid automata specification to address
predictable response times [4].

The AADL behavior annex [5] proposed in 2006, is an
extension of AADL to offer a way to specify the behaviors of
components without expressing them with the target language,
therefore it can support more precise behavioral and timing
analysis [6]. The Behavior Annex enhances AADL's ability to
describe the functional behavior of components such as thread
and subprogram, in the form of a transition system [7]. The
execution model defines when the Behavior Annex is executed
and which data is exchanged, while the Behavior Annex is
located within the component and gives a more accurate
description of the execution of components.

However, industrial complex systems are always described
with concurrent and composite states which make easier the
modeling of complex behaviors. If the nested state machines

are unfolded, a huge and unmanageable state machine diagram
will be formed. Although we can model a system with
AADL’s own hierarchical description capabilities, it will result
in a large amount of threads. Therefore, it is a very important
feature for the AADL behavior annex to express the functional
behavior hierarchically.

We know, the flattened model can hardly manage a large
number of states or actions and lose structural information. In
order to solve this problem, the UML State Charts was
proposed [8]. The UML state charts consist of a set of finite
state machines containing locations and edges. The state
machine can be embedded in a given location. Locations can
be "AND-locations" or "XOR-locations". The automata
embedded in "AND-locations" are independent of each other,
and they are executed in parallel. The automata embedded in
the "XOR-locations" can form a connected graph. In addition,
David A. et al. proposed HTA [9] (Hierarchical Timed
Automata) which is used to facilitate the hierarchical
modeling in UPPAAL. In addition, Ricardo Bedin et al.
evaluated the AADL Behavior Annex with a reengineering
experiment of a flight-control software and introduced the
hierarchical concept in AADL Behavior Annex. However, they
haven’t given formal syntax and semantics definitions, and the
implementation.

In this paper, we propose a hierarchical extension of AADL
behavior annex named HBA (Hierarchical Behavior Annex).
Then, we give the formal syntax and semantics definition of
the HBA. In order to implement HBA, we define the meta-
model extension of AADL behavior annex. Furthermore, the
plugin of HBA is integrated into the AADL open source
environment OSATE (Open Source AADL Tool Environment).
Finally, we present an actual industrial case using the HBA.

Moreover, as shown in Figure 1, we give a global view of
our AADL-based development approach adapted to China
industry. Firstly, a Restricted Natural Language (RNL)
requirements modeling method and its automatic
transformation into AADL models were proposed [10]. The
internal behaviors in the generated initial AADL model (M0)
may be not so precise, thus there will be a refinement process
which may include several steps. For instance, we can use
behavior annex or hierarchical behavior annex to refine the
internal behaviors of a thread, or several threads will be
combined into one thread with a hierarchical behavior annex.
Therefore, a relatively complete platform-independent model
M1 (PIM) will be obtained. In the second refinement,
designers add platform-specific details to the model such as
operational system API, interruption, pipeline communication,
watchdog, hardware protocol, etc., and obtain the platform-
specific model M2 (PSM). Moreover, the AADL models
should be formally verified. We use Timed Abstract State
Machine (TASM) and UPPAAL to verify the individual
properties of each component [11], the compositional
verification tool AGREE [12] to verify the system properties
of the hierarchical components, the Cheddar [13] tool to verify
the schedulability of the system. Finally, the executable C and
Ada code will be generated. We also consider how to relate
different stages together seamlessly by requirement

traceability [14], and the proof of semantics preservation [11].

Fig. 1. Global view of an AADL-based development

The rest of the paper is structured as follows. Section II
gives an introduction to AADL and Behavior Annex. Section
III gives the syntax of the HBA. Section IV defines the formal
semantics of the HBA. Section V presents the implementation
of the hierarchical extension of AADL Behavior Annex.
Section VI presents an industrial case study. Section VII
discusses the related work. Section VIII draws conclusions
and future work.

II. AADL AND ITS BEHAVIOR ANNEX

A. The AADL Language
AADL (Architecture Analysis and Design Language) is

designed for the specification, analysis, automated integration
and code generation of real-time performance-critical (timing,
safety, schedulability, fault tolerance, security, etc.) distributed
systems. It enables the development of highly evolvable
systems, early and quantitative analyses of a system's
architecture, and evolution of an architecture model for
continued analysis throughout the lifecycle.

AADL employs formal modeling concepts for the
description of software/hardware architecture and
nonfunctional properties of embedded real-time systems in
terms of distinct components and their interactions. AADL
offers a set of predefined component categories [2] [3].

� Thread, thread group, subprogram, data and process.
� Processor, memory, bus and device.
� System represents composite sets of software and

execution platform components.
For instance, a thread represents a sequential flow of

execution and it is the only AADL component that can be
scheduled. A subprogram represents a piece of code that can
be called by a thread or another subprogram.

Communication between components can be realized
through dataflow, call to server subprogram or access to
shared variable. These various connection points are declared

in the interface of the communicating components and are
called features. They will be Ports, Server Subprograms or
Data Access depending on the chosen communication
paradigm [6].

System behaviors do not only rely on the architecture
defined by such above components and their connections but
also rely on the runtime environment [11]. AADL standard
has specified execution model as a virtual runtime
environment, which contains synchronous as well as
asynchronous patterns, to support the execution and
management of components. Timing aspects such as deadline,
dispatch time, are also defined in the execution model,
declared through AADL properties.

Moreover, AADL supports two ways of extension: property
set and annex. The property set allows users to introduce new
property sets. For example, Cheddar, the scheduling analysis
tool, enhances AADL to support more complex scheduling
algorithms by defining new property sets. Existing annexes
include: AADL Error-Model Annex [15], AADL Behavior
Annex [5], ARINC653 Annex, Data-Model Annex, etc.

B. AADL Behavior Annex
Behavior annex lies in the computing state, is an extension

of the dispatch mechanism of execution model, to describe
more precisely the behaviors such as port communication,
subprogram call, timing, asynchronous, etc. The AADL
execution model specifies when the behavior annex is
executed and on which data it is executed. A full AADL
model should contain well-defined structure, execution model
and behavior annex. Now, a behavior annex can be attached to
any component of AADL. It is described using an extension of
AADL mode automata [5]: initial to specify a start state,
return to specify the end of a subprogram or complete to
specify completion of a thread, transitions may be guarded by
conditions and actions, conditions and actions include sending
or receiving events, calling or executing subprograms,
assigning or testing data variables as well as execution
abstractions such as use of CPU time or delay.

The behavior annex mainly includes three parts: Variables,
States, and Transitions. The variable part declares all the local
variables used in the current behavior annex. The local
variables can be used to save intermediate results within the
scope of the current behavior annex. The state part enumerates
the states of the machine with their properties (Initial,
Complete, Final, or a combination of them). By default, a state
is an execution state. The Behavior annex starts in the initial
state and terminates in the complete state, waiting for the next
dispatch of a thread, or in the final state. Transitions define the
transitions from a source state to a destination state. A
transition has also a guard, and an action.

In the case of subprograms, the automaton consists of one
initial state representing the starting point of a call, zero or
more intermediate execution states, and one final state. A final
state represents the completion of a call. The complete state is
not used in behavior specifications of subprograms.

In the case of threads and devices, the automaton consists of
one initial state representing the state before initialization
actions, one or more complete states, zero or more

intermediate execution states, and one or several final states.
A complete state acts as a suspend/resume state out of which
threads and devices are dispatched. The final state represents
the state when a thread or device completes finalization.

Here, we give an example of the behavior annex of a thread
as follows.
thread implementation example.impl
 annex behavior_specification{**
variables
 a : Base_Types :: Integer;
 has : Base_Types :: Boolean;
states
 s1 : initial complete state ;
 s2 : state ;
 s3 : state ;
 s4 : complete state;
transitions
 T_0 : s1 -[on dispatch p]->s2{has:=true};
 T_1 : s2 -[has = true]-> s3;
 T_2 : s2 -[has = false]-> s4{a:= a+1};
**};
end example.impl;

III. HIERARCHICAL BEHAVIOR ANNEX HBA SYNTAX
The HBA extends the AADL behavior annex to enhance the

hierarchical description capabilities of the behavior annex.
The HBA retains the variables, states and transitions of the
AADL behavior annex, and adds hierarchical mapping
functions and hierarchical states.

Definition1 (Hierarchical Behavior Annex (HBA)) A
hierarchical behavior annex is a tuple <Var, S, S0, �, T, type >,
where:

� Var is a finite set of variables.
� S is a finite set of states.
� 0S S⊆ is a set of initial states.
� : 2SSη → is a hierarchical function, it maps S to the

sub-states of S .The mapping η is required to give
rise to a tree structure where a special super-state
root S∈ is the root of the tree. We useη to record
the hierarchical relationship between a state S and
its sub-states.

� { }type : , , , , ,S AND XOR BASIC ENTRY EXIT HISTORY→ , it
enumerates all the types of states. Composite states
can be AND or XOR type and the type of non-
composite states is one of BASIC, ENTRY, EXIT,
or HISTORY.

The AND state indicates that all the sub-states of the
composite state are executed concurrently, which means,
when the parent state is executed its internal sub-states are
simultaneously executed from their respective initial states. In
the subsequent HBA implementation, we represent the AND
state as concurrent state. XOR indicates that all the sub-states
in the composite state are mutually exclusive, which means,
one and only one sub-state is executed at a time. In the
subsequent HBA implementation, we represent the XOR state
as composite state.

The BASIC state includes the initial state, the complete
state, and the final state, which are present in the AADL
behavior annex. The AND, XOR, ENTRY, EXIT, and
HISTORY states are new state types defined for the HBA.
The ENTRY state indicates that the non-composite state is the

entrance state of its parent state, which means, when entering
its parent state, it enters the sub-state by default. The EXIT
state is the out state for the corresponding non-composite
state, which means that when the parent state transits to next
state, the transition from this exit state to the next state is
actually performed. The HISTORY state is a pseudo-state
whose purpose is to remember the sub-state in which it exited
from the combined state. When entering the composite state
again, this sub-state can be entered directly instead of starting
from the ENTRY state of the combined state again.

� ()T s Guard Action s⊆ × × × is the set of transitions. A
transition connects two states s and s′ , and it has a
guard and an action. s is called the source state and
s′ is called the target state. We use the notion

,ags s′⎯⎯→ for this and omit g, a, when they are absent.
When the transition is completed, actions will be
performed.

Here we give an example as shown in Figure 2. In this
figure, Fig 2(a) depicts a state chart graphically and Fig 2(b)
shows its tree representation. Figure 3 shows the state diagram
in the corresponding AADL behavior annex code. We note
that state A is an AND state, and that ENTRY and EXIT states
do not appear in the tree representation.

F G H

I J

B C

A D

E

t1

t2

t3

t4

t5 t6

Root

A B C

D E

F G H I J

(a) (b)
Fig. 2. The syntax of HBA

annex behavior_specification{**
 states
 A : initial concurrent state ;
 B : state ;
 C : final state ;
 transitions
 t5 : A-[]->B;
 t6 : B-[]->C;
 concurrent state A
 composite state D
 states

F : state;
 G : state ;
 H : state ;
 transitions
 t1 : F-[]->G;
 t2 : G-[]->F;
 t3 : G-[]->H;
 end D;
 composite state E
 variables
 x : Base_Types::Integer;
 states
 I : state ;
 J : state ;
 transitions
 t4 : I-[x > 0]->J{x := x+1};
 end E;
end A;
**};

Fig. 3. Textual representation of the HBA example

In the following paragraphs, we will give the state
constraints, and we first present the syntactic conventions.
Syntactic Conventions:

For { }, , , , , ,TYPE AND XOR BASIC ENTRY EXIT HISTORY s S∈ ∈ , we
use the predicate notation ()TYPE s . For example, ()AND s is
true when ()TYPE s AND= .

The type HISTORY is a special case of an entry, we
use ()HEntry s to capture simple entry or history entry. When
HISTORY exist () ()ntry =HE s Histroy s ,otherwise ()HEntry s is the
default ENTRY state of s .

We define the parent function 1η − :

() {-1 , s (b) if s root= b whereS otherwise
ηη ∈ ≠

⊥

So, we define the grandparent function -2η :
()-2 1 1= , a, a and a sS b where bη η η− −∃ = () = ()

Then, we give a set of constraints to ensure consistency of
an HBA:

State Constraints:
� Only composite state contains other states:

() () ()AND s XOR s sη∨ ⇔ ≠ ∅
� Sub-states of AND composite states are not of a basic

type:
() () ()AND s b s Basic bη∧ ∈ � ¬

� There is one initial location per XOR composite state:
() () 0 1XOR s s Sη� =�

� There is only a single history state for each
submachine.

� All the sub-states of an AND states must be an XOR
type.

� The syntax does not support directly edges to a
composite state such as AND or XOR state. A
transition having a composite state as target
corresponds to its default entry. The default entry is
connected to the initial location of the given
composite state. For transitions having a composite
state as source, this is the same as having the source
being a default exit connected to all internal states.
The legal transitions are given in Fig 4 and Table I,
where the black solid point represents the ENTRY or
EXIT states and the white hollow point represents a
basic state. The transitions cannot go directly from
an ENTRY state to an EXIT state.

Internal transition

Hierarchical transitions

Entering transitions

Exiting transitions
Fig. 4. Legal transitions

TABLE I. Legal transition Example
Transition

types
s s′ Constraint

Internal BASIC
BASIC
HEntry

BASIC
EXIT

BASIC

() ()1 1s sη η− − ′=

Entering BASIC
HEntry

HEntry
HEntry

() ()1 2s sη η− − ′=

Exiting EXIT
EXIT

BASIC
EXIT

() ()2 1s sη η− − ′=

Changing EXIT HEntry () ()2 2s sη η− − ′=

IV. HIERARCHICAL BEHAVIOR ANNEX(HBA) SEMANTICS
We define the operational semantics of the HBA formalism.

Legal steps between states of an HBA define a set of traces. A
state captures a snapshot of the system, i.e., the active states,
the integer variable values, and the history of some super-
states.

Definition 2 (States) States are of the form (), ,ρ μ θ , where:
� : 2SSρ → is a mapping function that gives the set of

active states. ρ can be understood as a dynamic
version of η that maps every super-state S . If a
super-state S is not active, then ()Sρ = ∅ . We
define ()*(S) SActive rootρ= ∈ , where *(S)ρ is the set of
all active sub-states of S including S, We note that
for S root≠ : 1(S) S ((S))Active ρ η −⇔ ∈ , where ()-1 Sη is the
parent state of S.

� :Varμ → � maps variables to their values. If
(S)Active¬ , then for (S)Varν ∈ , ()μ ν is undefined: we

note (v)μ =⊥ .
� : S Sθ → returns the last visited sub-state of S or an

entry of the sub-state in the case where the sub-state
is not basic. If the exiting state is a BASIC state of
the composite state, (S)θ returns the BASIC state;
otherwise, it returns the ENTRY state of the
composite.

History state: We capture the existence of a history entry
with the predicate as (S) (S). HISTORY(b)H History b η= ∃ ∈ . If

as istory(S)H H holds, the term ntry(S)HE denotes the unique
history entry of S. If ntry(S)HE does not holds, the term

ntry(S)HE denotes the default entry of S. If S is a BASIC state,
then ntry(S)=SHE . If none of the above is the case, then

ntry(S)HE is undefined.
Definition3 (Internal Transition) We define the internal

transformation for transformations that the source state and
destination state are within the same composite state. The
value of variables will be update to V2 from V1 by the action
a.

1 1

,
1 2

(S) (S), _
(S, V) (S , V)g a

g true simple transitionη η− − ′= =
′⎯⎯→

In order to describe the transitions that across the composite
state boundary, we define the Entering transition and Exiting
transition.

For each composite state, there is a default entry state and a
default exit state. When a transition takes the external state as
the source and takes the internal state as the destination, it
needs to use the entering transition.

-1 2
1 1

,
1 1

-1 1
1 1

1 1 1

,
1

(S) (S), ENTRY(S) true,g true 1
(,) (,)

(S) (S), ENTRY(S) true 2
(,) (,)

1 2 _
(, V) (,)

g a

g a

ent
S V S V

ent
S V S V

ent ent Entering transition
S S V

ε

η η

η η

−

−

= = =
⎯⎯→

′= =
′⎯⎯→

′⎯⎯→
�

As the Entering transitions that we can see in Figure 4, the
parent state of the source state (i.e. -1(S)η) and the grandparent
state of the destination state (i.e. 2

1(S)η −) is the same state.
Since the source state type is not fixed, we do not constrain
the source state. The entry transition is divided into two steps:
1) the transition from the external state to the Entry (i.e. S1) of
the composite state, and 2) the transition from the entry state
to the destination.

When a transition takes the internal state as the source and
takes the external state as the destination, it needs to use the
exiting transition.

-1 1
1 1

1

-2 1
1 1

,
1 1

,
1

(S) (S), (S) true 1
(,) (,)

(S) (S), EXIT(S) true,g true 2
(,) (,)

1 2 _
(, V) (,)

g a

g a

EXIT ext
S V S V

ext
S V S V

ext ext Exiting transition
S S V

ε
η η

η η

−

−

= =
⎯⎯→

′= = =
′⎯⎯→

′⎯⎯→
�

The Exiting transition is similar to the Entering transition,
but the grandparent state of the source state (i.e. -2

1(S)η) and the
parent state of the destination state (i.e. 1(S)η − ′) is the same
state. The exit transition is divided into two steps: 1) the
transition from the source state to the Exit (i.e. S1) of the
composite state, and 2) the transition from the exit state to the
destination.

Definition4 (Hierarchical Transition) Hierarchical
transition ,aHT : gS S ′⎯⎯→ is a transition exits from a composite
state and enters another composite one, as show in Fig 4,
including three steps: (1) executing an exiting transition to exit
the super-state of S , (2) taking the transition HT itself, and (3)
executing an entering transition to enter the super-state of S′ .
Together, 1-3 define a hierarchical transition.

-1 1
1 1

1

-2 2
1 2 1 2

,
1 2 1

-1 1
2 2

2 1 1

,
1

(S) (S), (S) true 1
(,) (,)

(S) (S), EXIT(S) true, ENTRY(S) true,g true 2
(,) (,)

(S) (S), ENTRY(S) true 3
(,) (,)

1 2 3
(, V) (,)

g a

g a

EXIT ht
S V S V

ht
S V S V

ht
S V S V

ht ht ht H
S S V

ε

ε

η η

η η

η η

−

−

−

= =
⎯⎯→

= = = =
⎯⎯→

′= =
′⎯⎯→

′⎯⎯→
� � _ierarchical transition

We use the HT to present the hierarchical transition. So,
after the hierarchical transition, we can get ()1, 1 1,ρ μ θ :

{ }1= | , HT()x b b xρ ρ∀ ∈ =

{ }1= | , HT(v)vμ θ μ θ∀ ∈ =
1 ()HISTORYθ θ=

Definition5 (State transformation) We define the state
transformation Tst :

() ()1 1 1, , , ,Tst ρ μ θ ρ μ θ=
Each system snapshot consists of three parts: ρ , μ , and θ .

After a state transition, the snapshot will be updated to 1ρ , 1μ ,
and 1θ .

Remark 1: Synchronization usually involves a sender and a
receiver and data change. Moreover action sending and
receiving can be guarded. Since in AADL, we have global
variables, one can define many semantics for such a
synchronization. Since, we have adopted UPPAAL as a
verification engine, we use the UPPAAL semantics for the
basic synchronization and exchange data through global
variables.

V. THE IMPLEMENTATION OF HIERARCHICAL BEHAVIOR ANNEX
In the implementation, in order to identify the extended

syntax, we use ANTLR (ANother Tool for Language
Recognition) technology to generate an Abstract Syntax Tree
(AST). The input language of ANTLR is very similar to the
BNF form, so we give the BNF description of the HBA. In
addition, we use the EMF and the Xtext technologies to
extend hierarchical elements in the meta-model of behavioral
annex. The meta-model is one of the inputs of the EMF, so we
give the meta-model extension of the HBA.

A. Extension of the AADL Behavior Annex BNF
It shows the original AADL behavior annex concrete syntax

(part) and the extended AADL behavior annex concrete syntax
(part) in Figure 5 and Figure 6 respectively. We have added the
concept of composite states and the expression of inline sub-
states in composite states.
behavior_annex ::=

[variables { behavior_variable }+]
[states { behavior_state }+]
[transitions { behavior_transition }+]

behavior_state ::=
behavior_state_identifier { , behavior_state_identifier }* : behavior_state_kind

state;
behavior_state_kind ::= [initial][complete][final]

behavior_transition ::=
 [transition_identifier [[behavior_transition_priority]] :] source_state_dientifier
{,source_state_identifier}*

-[behavior_condition]-> destination_state_identifier[{behavior_actions}
[timeout behavior_time]]
Behavior condition ::= dispatch condition | execute condition

Fig. 5. Original AADL behavior annex syntax (part)

behavior_annex ::=
[variables { behavior_variable }+]
[states { behavior_state }+]
[transitions { behavior_transition }+]
{concurrent concurrent_state}*
{composite composite_state}*

behavior_state ::=
behavior_state_identifier { , behavior_state_identifier }* : behavior_state_kind

state;
behavior_state_kind ::= [initial][complete][final] [composite] [concurrent]

[history] [entry] [exit]
behavior_transition ::=
 [transition_identifier [[behavior_transition_priority]] :] source_state_dientifier
{,source state identifier}*

-[behavior_condition]-> destination_state_identifier[{behavior_actions}
[timeout behavior_time]]
Behavior_condition ::= dispatch_condition | execute_condition
concurrent_state ::=

state behavior_state_identifier
{composite composite_state}+

end behavior_state_identifier;
composite_state ::=

state behavior_state_identifier
[variables { behavior_variable }+]
[states { behavior_state }+]
[transitions { behavior_transition }+]
{concurrent concurrent_state}*
{ composite composite_state}*

end behavior_state_identifier;

Fig. 6. The extended AADL behavior annex syntax (part)

B. Extension of the AADL Behavior Annex meta-model
The AADL behavior annex is closely related to the AADL

core, so the AADL behavior annex meta-model reuses the
AADL meta-model's EMF framework and is designed on this
basis. On the one hand, this aspect facilitates the integration of
AADL-BA in OSATE2. On the other hand, using the same
form to formulate two meta-models can simplify the
expression of object dependencies and simplify the model
connection between them.

The behavior annex requires to attach a behavior
specification to an AADL component and to link AADL-BA
objects with AADL objects. It is reinforced by the
implementation of the OSATE2 sub-language extension which
requires linking a BehaviorAnnex object to the
AnnexSubclause object of the AADL component.

We show the dependency between two meta-models
expressed through EMF extensions (e.g. Java's inheritance
mechanism) in Figure 7. As we can see, a BehaviorAnnex
extends an AnnexSubclause, and a BAElement extends an
Element. The latter simplifies the link from the AADL-BA
model to the AADL model by referencing the AADL objects in
the behavior specification and easily retrieving the
corresponding AADL objects during the analysis.

ElementAnnexSubclause

BAElementBehaviorAnnex

AnnexSubclause
Java class

BehaviorAnnex
Java class

EMF/GenMode
l

EMF/GenMode
l

extends

Fig. 7. AADL-BA Meta-model dependency

In order to extend the AADL behavior annex, we first
extend the AADL meta-model to increase the expression
of concurrent states and compound states (See bold part in
Figure 8).

BehaviorAnnex

BehaviorVarilable BehaviorState BehaviorTransition ConcurrentState CompositeState

BehaviorCondition BehaviorAction

ExecuteCondition DispatchCondition

[1..*]behaviorVariables

[1..*]behaviorStates

[1..*]behaviorTransitions

[0..1]behaviorCondition [0..1]behaviorAction

[1..*]concurrentStates
[1..*]compositeStates

[2..*]compositeStates

Fig. 8. The extended AADL behavior annex meta-model (part)

As we can see in Fig.8, the main difference between the
extended hierarchical behavior annex and the AADL behavior
annex is the addition of Composite State and Concurrent Sate.
In addition, in order to comply with the aforementioned
constraints, we have correspondingly added state types such as
entry state and exit state.

C. Java code generation with ANTLR and Xtext
ANTLR is a powerful parser generator for reading,

processing, executing, or translating structured text or binary
files. It's widely used to build languages, tools, and
frameworks. From a grammar, ANTLR generates a parser that
can build and walk parse trees.

Xtext is a framework for development of programming
languages and domain-specific languages. With Xtext we can
define our language using a powerful grammar language. As a
result we get a full infrastructure, including parser, linker, type
checker, and compiler as well as editing support for Eclipse.

The syntax rules of ANTLR are similar to BNF, so we can
quickly modify the ANTLR model with the previously
proposed BNF syntax. The original ANTLR framework for
behavioral annex can be found on GitHub. We use the
methods of the AADL-HBA builder factory in the ANTLR
grammar to specify how to build the abstract syntax tree (AST)
with AADL-HBA objects. It ensures that the AST is compliant
with the AADL-HBA meta-model. Finally we use the ANTLR
framework to generate the Java classes of the parser and the
lexer from the AADL-HBA BNF defined.

Moreover, OSATE is an open source environment that
provides supports for the development of architecture models
for embedded real-time systems based on AADL, including
modeling, compilation and analysis for AADL. OSATE not
only provides a set of plug-ins (for validating models or
interfacing them with other tools), but also provides an
extensible framework for users to develop plug-ins for AADL
models. OSATE is based on Eclipse and is constructed using
Xtext, which supports the textual editor of AADL. Besides,
AADL Behavior Annex plugin-in is also based on Xtext
technology and the meta-model (a kind of input of Xtext) of
AADL Behavior Annex can be download on the internet. Thus,

we extend the meta-model of BA with the EBNF (section IV).
AADL supports textual modeling and graphical modeling,

while behavior annex does not support graphical display and
modeling. In order to facilitate using HBA, we implement a
graphic editor for the AADL behavior annex as a plugin,
including graphical display and graphical modeling.

VI. CASE STUDY

A. LCS system
The Launch Control System (LCS) is an important element

of the Rocket Ground Test Launch Control System. It protects
the equipment during rocket testing, and sets parameters and
launch controls before firing. The mission of the LCS system
is to receive commands from the command system, complete
the test of the rocket on the launch vehicle at the launch site,
conduct launch control and simulate rocket launches at the
training. A simplified block diagram of the rocket LCS system
is given Figure 9.

Equipment
Controller

Management
Machine

Rocket
Power

Channel
Detector

Control
Command
Detection

Board

Driver

Driver
Management

Controller

Data
Process

Unit
Process

pipeline

pipeline

pipeline

Rocket Launch Control
System Software

Fig. 9. Rocket launch control system

In the requirement document, the LCS system is divided
into five layers, such as driver, driver management, data
processing, unit processing, and controller. There are 53
functional modules in total. Each functional module contains a
set of complex processing.

Layer Functional Modules
Driver 17

Driver Management 10
Data Processing 2
Unit Processing 13

Controller 11
We have developed a tool [10] that can automatically

generate AADL initial models from restricted natural
language (RNL) requirements. We have already specified the
requirements of LCS system in RNL, thus, an initial AADL
model of the LCS system can be automatically generated.
Here, we mainly focus on the refinement of the generated
initial AADL models. Due to space limitations, we present the
refinement of the Power Control Function in the Unit
Processing Layer of the LCS system as a demonstration in this
paper.

B. Power Control Function
1) Requirement

There are 10 modules in the Power Control Function. In
order to simplify the description, we only introduce several
functional modules.

The first module is Rocket Power-On 1(RPOn1). The
purpose of this module is to check the rocket type
identification code and launch platform self-check results. If
the check result is fault, then the thread calls Rocket Power-
Off 1(RPOff1) module. If the check result is correct, the thread
will call Rocket Power-On 2(RPOn2) module. The purpose of
this module is to check the result of the rocket self-check. If
the self-check result is fault, then the thread calls Rocket
Power-Off 2(RPOff2) module, otherwise, the thread calls
Rocket Power-On 3(RPOn3) module. The purpose of this
module is to check the results of rocket power supply. If the
check result is fault, then the thread calls Rocket Power-Off
3(RPOff3) module, otherwise, the thread calls Open the Cover
(OC) module. The functional behavior of Power Control
Function is shown in Figure 10.

RPOn1 RPOn2 RPOn2

RPOff1 RPOff2 RPOff3

OC
Result=correct Result=correct Result=correct

Result=fault Result=fault Result=fault

Fig. 10. The functional behavior of Power Control Function

The above requirements are the architecture designed by the
architects. They may not consider the internal processing
details of each module. The internal details will be
supplemented by the designer during the refinement phase.

2) Modeling with BA
Here behavior annex is used to present the first refined

behaviors. The AADL code is given as follows:
annex behavior_specification{**

states
 RPOn1 : initial state;
 RPOn2 : state;
 RPOn3 : state;
 OC : state;
 RPOff1 : state;
 RPOff2 : state;
 RPOff3 : state;
 Omit : complete state;

transitions
 T1 : RPOn1 -[result1=correct]-> RPOn2;
 T2 : RPOn1 -[result1=faulty]-> RPOff1{errMsg!(err1)};
 T3 : RPOn2 -[result2=correct]-> RPOn3;
 T4 : RPOn2 -[result2=faulty]-> RPOff2{errMsg!(err2)};
 T5 : RPOn3 -[result3=correct]-> OC;
 T6 : RPOn3 -[result3=faulty]-> RPOff3{errMsg!(err3)};
 T7 : OC -[]->Omit;
**};

The corresponding graphical effects in the above case are
shown in Figure 11.

Fig. 11. Power Control Function graphical display

C. Refinement
1) Requirement

Here we only present the refinement of the Rocket Power-
On 1(RPOn1) module. In our AADL specification, there are
three sub-modules in RPOn1: the Launch Platform Self-Check
Module (LPSCM), the Rocket Type Check Module (RTCM),
and Rocket Power-On Module (RPOM). The Launch Platform
Self-Check Module checks the launch platform status and
sends the check result to the Rocket Type Check Module. The
Rocket Type Check Module confirms whether the rocket type
is consistent with the required type and sends the confirmation
result to the Rocket Power-On Module. The Rocket Power-On
thread determines whether to power on the rocket.

The Launch Platform Self-Check Module (LPSCM) is
specified as an automaton which contains four main states:
Platform Information Decoding State, Platform Self-Checking
State, Normal State, and Error Report State. After the
platform information is decoded, the automaton sends the
platform description information, and then the automaton
enters the Platform Self-Checking State. The Launch Platform
Self-Checking State gives the self-check result. If the self-
check result is correct, the automata enters in the Normal
State, and the self-check result message is sent to the Rocket
Type Check Module (MTCM) through the port; otherwise, an
Error Report State is entered. The errorReport state includes
four sub-states: IO Port Power off (P), Set Flag (S), Report
Error Message (R) and Update Rocket Configuration (U). The
inner execution of errorReport state is sequential. After
cutting the power, the automaton enters the Set Flag State.
Then the automaton set the flag to fault. In the end, the
automaton updates the configuration information of the rocket.

The functional behavior of the Rocket Type Check Moudle
(RTCM) is presented as an automaton which includes four
major states: Self-Check Result Decoding State, Rocket Type
Identification State, Type Correctness State, and Error Report
State. After receiving the platform self-check result message,
the automaton enters the Rocket Type Identification State. The
Rocket Type Identification State confirms that the type of
rocket is consistent with the type required. If the rocket type is
correct, the automata enters the Type Correctness State and
sends the confirm result message to the Rocket Power-On
Module (RPOM) through the port; otherwise, the automaton

enters the Error Report State. The state of the Error Report is
the same as described as above.

The functional behavior of the Rocket Power-On Module
(RPOM) is described by an automaton which includes two
main states: Rocket Power-On and Power-On Report. After
receiving the recognition result message, the automaton enters
the Rocket Power-On State. After the completion of power-on,
the automaton enters the Power-On Report State.

The functional behavior of RPOn1 is shown in Figure 12.
RP0n1

Dec
ode TC OK

Result=
true

Result=f
alse

ER

RTCstateLPSCM

Dec
ode SC OK

Result=
true

Result=f
alse

ER

PO OK

Result=
true

Result=f
alse

ER

RPOstate

Fig. 12. The functional behavior of RPOn1

2) Modeling with HBA
Here, we take the functional behavior of the Launch

Platform Self-Check Module (LPSCT) as example, which
includes 4 states and 3 transitions. The errorReport state is a
composite state, it includes 4 sub-states. There is also an
automaton in the composite state errorReport. The AADL
code is given as follows:
 annex behavior_specification{**
 states
 RPOn1 : initial state;
 RPOn2 : state;
 RPOn3 : state;
 OC : state;
 RPOff1 : state;
 RPOff2 : state;
 RPOff3 : state;
 Omit : complete state;
 transitions
 T1 : RPOn1 -[result1=correct]-> RPOn2;
 T2 : RPOn1 -[result1=faulty]-> RPOff1{errMsg!(err1)};
 T3 : RPOn2 -[result2=correct]-> RPOn3;
 T4 : RPOn2 -[result2=faulty]-> RPOff2{errMsg!(err2)};
 T5 : RPOn3 -[result3=correct]-> OC;
 T6 : RPOn3 -[result3=faulty]-> RPOff3{errMsg!(err3)};
 T7 : OC -[]->Omit;
 composite state RPOn1
 states
 LPSCM : initial complete state ;
 RTCstate : state ;
 RPOstate : complete state ;
 transitions
 T8 : LPSCM -[on dispatch]->

RTCstate{selfCheckResult!(PlatformCheckResult)};
 T9 : RTCstate -[]-> RPOstate{confirmPort!(confirmResult)};
 --composite state LPSCM
 composite state LPSCM
 variables
 checkResult : Base_Types::Boolean;
 states
 decode : initial state;
 selfCheckState : state;
 OK : complete state;
 errorReport : complete state;
 transitions
 T10 : decode -[]-> selfCheckState{platformInfoPort!(pdMsg)};
 T11 : selfCheckState -[result = true]-> OK{checkResult:=true;

selfCheckResult!(checkResult)};
 T12 : selfCheckState -[result = false]-> errorReport{

checkResult:=false;selfCheckResult!(checkResult)};
 composite state errorReport
 states
 powerOff : initial state;

 setFlag : state;
 reportBack : state;
 update : complete state;
 transitions
 T13 : powerOff -[]-> setFlag{power := cutOff};
 T14 : setFlag -[]-> reportBack{flag := fault};
 T15 : reportBack -[]-> update {platformInfoPort!(configInfo)}
 end errorReport;
 end LPSCM;

--end composite state
 end RPOn1;

**};
The corresponding graphical modeling is shown in Figure

13, 14 and 15.
When we double-click the RPOn1 state in Figure 11, we

can see the automaton shown in Figure 13. The Fig13 shows
the graph of the Rocket Power-On 1(RPOn1) Module. Figure
14 shows the graph of the Launch Platform Self-Check
Module, in which errorReport state is a composite state. After
double-clicking the errorReport state, the internal rendering is
shown in Figure 15.

Fig. 13. RPOn1 state graphical display

Fig. 14. Graphical representation of LPSCM state

Fig. 15. Internal structure of errorReport state

D. Lesson learned
During the collaboration with our industrial partner for

devising the methodology and conducting the industrial case

study, we learned the following lessons in real industrial
contexts.
� The ability to describe hierarchically is very important.

Due to the large scale of actual industrial projects and the
large amount of background knowledge required, the
idea of layer-by-layer refinement goes through the entire
development life cycle. Thanks to the idea of layering,
designers at each level can focus on the work within their
domain knowledge.

� When communicating with engineers, they found it hard
to accept such semi-formal modeling languages like
AADL. Instead, they are more willing to accept graphical
modeling or pseudo-code formative languages. Therefore,
a more vivid expression will be more easily accepted by
engineers.

VII. RELATED WORK
In terms of hierarchical extension, Harel et.al [16] presented

an extension of the conventional formalism of state machines
and state diagrams. The statecharts extend conventional state-
transition diagrams with essentially three elements, dealing,
respectively, with the notions of hierarchy, concurrency and
communication, solved the problems of large-scale state-
machines with the deep level nesting of complex system, but
the real-time description of embedded safety-critical software
is still lacking. In order to solve the problem that the timed
automata cannot describe hierarchical models, David et.al [17]
proposed the concept of Hierarchical Timed Automata (HTA)
and solved the complex hierarchical system modeling and
verification issues by extending timed automata. HTA can
model hierarchical systems and verify their temporal
properties, but it needs to transform the model to the
automaton form manually, which increases the complexity of
the work.

In terms of formal syntax and semantics, the hierarchical
extended HTA formal syntax and operational semantics was
given in [17], and a simplified HTA model had been given.
Yang et.al. [6] defined the formal semantics of the AADL
behavior annex through the timed abstract state machine
(TASM) and proposed a real-time behavioral modeling and
verification prototype. Zhou et.al. [18] gave the underlying
semantics of the UML state machine diagram and the time-
dependent modeling elements of MARTE, the configuration
files for real-time embedded system modeling and analysis,
and proposed the formalization of its operational semantics
based on extended hierarchical timed-automata. Ölveczky P.C.
et.al. [19] presented a formal real-time rewriting logic
semantics for a behavioral subset of AADL which includes the
essential aspects of its behavior annex. This semantics is
directly executable in Real-Time Maude. In order to support
unambiguous reasoning, formal verification, high-fidelity
simulation of architecture specifications in a model-based
AADL design workflow, Besnard L et.al. [20] defined a
formal semantics for the behavior specification of the AADL.
Larson et.al. [21] presented the Behavioral Language for
Embedded Systems with Software (BLESS), a behavioral
interface specification language and proof environment for

AADL. BLESS provided a formal semantics for AADL
behavioral descriptions and automatic generation of
verification conditions that, when proven by the BLESS proof
tool, establish that behavioral descriptions conform to AADL
contracts. Ehsan Ahmad et.al. [22] presented formal semantics
of the synchronous subset of AADL models annotated with
Hybrid Annex specifications using HCSP. The semantics was
then used to verify the correctness of AADL models (with
Hybrid Annex specifications) using an in-house developed
theorem prover -- Hybrid Hoare Logic (HHL) prover. In order
to support unambiguous reasoning, formal verification, high-
fidelity simulation of architecture specifications in a model-
based AADL design workflow, Besnard et al. [23] had defined
a formal semantics for the behavior specification of the AADL.
Johnsen et.al. [24] formalized a subset of AADL-core and
transformed it to UPPAAL's input language, the Timed
Automata (TA). They gave a formal semantics definition of
the AADL subset by mapping the AADL subset to timed
automata through a semantically anchored method. Franca R
B et.al.[25] respectively evaluated the practicality of AADL-
BA through actual engineering projects, analyzed the
constraints of AADL-BA, and proposed the idea of
hierarchical extension of the behavioral annex, but did not
give a formal definition and implementation.

VIII. CONCLUSION AND FUTURE WORK
It is a very important feature to express concurrent and

composite states in safety-critical systems. Although we can
model a system with AADL’s own hierarchical description
capabilities, it will result in a large amount of threads.
Moreover, in actual development, a refinement process is
always needed before system synthesis, in which several
threads will be combined into one thread that has composite
states. This paper proposes a hierarchical extension of AADL
behavior annex named HBA (Hierarchical Behavior Annex).
The formal syntax and the semantics of hierarchical
behavioral annex are presented. In addition, through the
extension of the AADL behavioral annex meta-model, based
on EMF and Xtext technologies, the corresponding plug-ins
are implemented on the AADL open source development
environment OSATE. Finally, an industrial case study is given
and evaluated.

This paper presents the formal definition of the extended
hierarchical behavioral automata, which supports the
modeling of the behavior of complex embedded real-time
systems. However, the work at this stage only stays in the
modeling aspect, and there is still a lack of property
verification capabilities for the model. We are currently
working on the transformation from the hierarchical
behavioral annex (HBA) to hierarchical timed automata
(HTA) to verify time properties of complex embedded real-
time systems. In addition, in order to express both control
flows and data flows in the functional behavior, we propose
the co-modeling of synchronous language [26] (such as
SIGNAL) and behavior annex (or hierarchical behavior annex)
to describe the functional behaviors inside the AADL
components.

ACKNOWLEDGMENT
This work is partly supported by National Natural Science

Foundation of China (61502231); The National Key Research
and Development Program of China (2016YFB1000802);
National Defense Basic Scientific Research Project under
Grant of China (JCKY2016203B011); Natural Science
Foundation of Jiangsu Province (BK20150753); the Avionics
Science Foundation of China (2015ZC52027), China
Postdoctoral Science Foundation.

REFERENCES

[1] Axer P, Ernst R, Falk H, Girault A, Grund D, Guan N, Jonsson B,
Marwedel P, Reineke J, Rochange C, Sebastian M, Von hanxleden R,
Wilhelm R, Wang Y. Building Timing Predictable Embedded Systems.
ACM Trans. Embed. Comput. Syst., 2014, 13(4): 82:1-82:37.

[2] SAE. Architecture Analysis & Design Language (standard SAE
AS5506A), 2009, available at http://www.sae.org.

[3] Surhone L M, Tennoe M T, Henssonow S F. Architecture Analysis and
Design Language[M]. Betascript Publishing, 2010.

[4] Feiler P H, Lewis B A, Vestal S. The SAE Architecture Analysis &
Design Language (AADL) a standard for engineering performance
critical systems[C] Computer Aided Control System Design, 2006
IEEE International Conference on Control Applications, 2006 IEEE
International Symposium on Intelligent Control. IEEE Xplore,
2006:1206-1211.

[5] SAE-AS5506/2, SAE Architecture Analysis and Design Language
(AADL) Annex Volume 2, Annex D: Behavior Annex. Int’l Society of
Automotive Engineers, 2011.

[6] Yang Z, Hu K, Ma D, et al. Towards a formal semantics for the AADL
behavior annex[J]. 2009:1166-1171.

[7] Yang Z B, Kai H U, Zhao Y W, et al. Verification of AADL Models
with Timed Abstract State Machines[J]. Journal of Software, 2015.

[8] Elattar M, Luqman H, Karpati P, et al. Extending the UML Statecharts
Notation to Model Security Aspects[J]. IEEE Transactions on Software
Engineering, 2015, 41(7):661-690.

[9] David A. Hierarchical modeling and analysis of timed systems[J].
Department of Information Technology Uppsala University Sweden,
2006.

[10] Wang F, Yang ZB, Huang ZQ, Zhou Y, Liu CW, Zhang WB, Xue L, Xu

JM. Approach for Generating AADL Model Based on Restricted Natural

Language Requirement Template [J]. Journal of Software, 2018,29(8) (in

Chinese).

[11] Yang Z, Hu K, Ma D, et al. From AADL to Timed Abstract State Machines:

A verified model transformation [J]. Journal of Systems & Software, 2014,

93(2):42-68.

[12] Cofer D, Gacek A, Miller S, et al. Compositional Verification of

Architectural Models[C] International Conference on NASA Formal

Methods. 2012:126-140.

[13] Singhoff F, Plantec A, Rubini S, et al. Teaching Real-Time Scheduling
Analysis with Cheddar[C] Ecole d'été Temps Réel. 2015.

[14] Wang Fei, Huang Zhi-Qiu, Yang-Zhi-Bin, KAN Shuang-Long, SHEN Guo-

Hua, CHEN Guang-Ying. A Requirements Traceability Approach for

Safety-Critical Embedded System [J]. Chinese Journal of computers,

2018(3), (in Chinese).

[15] Delange J, Feiler P. Architecture Fault Modeling with the AADL Error-
Model Annex[C] Software Engineering and Advanced Applications.
IEEE, 2014:361-368.

[16] Harel D. Statecharts: a visual formalism for complex systems[J].
Science of Computer Programming, 1987, 8(3):231-274.

[17] David A. Hierarchical modeling and analysis of timed systems[J].
Department of Information Technology Uppsala University Sweden,
2006.

[18] Zhou, Luciano, Baresi, et al. Towards a Formal Semantics for
UML/MARTE State Machines Based on Hierarchical Timed
Automata[J]. Journal of Computer Science and Technology, 2013,
28(1):188-202.

[19] Ölveczky P C, Boronat A, Meseguer J. Formal Semantics and Analysis
of Behavioral AADL Models in Real-Time Maude[C] Ifip Wg 6.1
International Conference and, Ifip Wg 6.1 International Conference on
Formal Techniques for Distributed Systems. Springer-Verlag, 2010:47-
62.

[20] Besnard L, Gautier T, Guy C, et al. Formal semantics of behavior
specifications in the architecture analysis and design language
standard[C] High Level Design Validation and Test Workshop. IEEE,
2016:30-39.

[21] Larson B R, Chalin P, Hatcliff J. BLESS: Formal Specification and
Verification of Behaviors for Embedded Systems with Software[C]
NASA Formal Methods Symposium. Springer Berlin Heidelberg,
2013:276-290.

[22] Ahmad E, Dong Y, Wang S, et al. Adding Formal Meanings to AADL
Models with Hybrid Annex[C] Facs. 2014.

[23] Besnard L, Gautier T, Guy C, et al. Formal semantics of behavior
specifications in the architecture analysis and design language
standard[C] High Level Design Validation and Test Workshop. IEEE,
2016:30-39.

[24] Johnsen A, Lundqvist K, Pettersson P, et al. Automated verification of
AADL-specifications using UPPAAL[C]. High-Assurance Systems
Engineering (HASE), 2012:130-138.

[25] Franca R B, Bodeveix J P, Filali M, et al. The AADL behaviour annex --

experiments and roadmap[C] IEEE International Conference on Engineering

Complex Computer Systems. IEEE Computer Society, 2007:377-382.
[26] Gautier T, Guy C, Honorat A, et al. Polychronous Automata and their Use

for Formal Validation of AADL Models[J]. Frontiers of Computer Science,

2017.

