
978-1-5386-6195-6/18/$31.00 ©2018 IEEE 

Hierarchical Behavior Annex: Towards an AADL 
Functional Specification Extension  

 

Jinmiao Xu  
College of Computer Science and 

Technology  
Nanjing University of 

Aeronautics and Astronautics 
Nanjing, China 

JinMiao_Xu@163.com 

Zhibin Yang 
College of Computer Science and 

Technology  
Nanjing University of 

Aeronautics and Astronautics 
Nanjing, China 

yangzhibin168@163.com 

Zhiqiu Huang 
College of Computer Science and 

Technology  
Nanjing University of 

Aeronautics and Astronautics 
Nanjing, China 

zqhuang@nuaa.edu.cn 

Yong Zhou 
College of Computer Science and 

Technology  
Nanjing University of 

Aeronautics and Astronautics 
Nanjing, China 

zynuaa@nuaa.edu.cn
 

Chengwei Liu 
College of Computer Science and 

Technology  
Nanjing University of 

Aeronautics and Astronautics 
Nanjing, China 

Lei Xue 
Shanghai Academy of 

Space�ight Technology  
Shanghai, China 

jzgunking@163.com 

 

Jean-Paul Bodeveix 
IRIT 

Université de Toulouse 
Toulouse, France 
bodeveix@irit.fr 

 

Mamoun Filali 
IRIT 

Université de Toulouse 
Toulouse, France 

filali@irit.fr 

 
Abstract—AADL is a modeling language to design and 

analyze embedded real-time systems and is widely used to model 
safety-critical systems. AADL describes the system models 
hierarchically through components such as systems, processes, 
and threads, etc. The Behavioral Annex is a supplement of AADL 
in terms of functional behavior. It enables modeling component 
and component interaction behavior in a state-machine-based 
annex sublanguage. At present, there is no mechanism to 
represent hierarchical automata in the behavioral annex. 
However, this is a very important feature because industrial 
complex systems are always described with concurrent and 
composite states. Although we can model a system with AADL’s 
own hierarchical description capabilities, it will result in a large 
amount of threads. In actual development, a refinement process 
is always needed before system synthesis, in which several 
threads may be combined into one thread that has concurrent 
and composite states. This paper proposes a hierarchical 
extension of the AADL behavioral annex which is named HBA 
(Hierarchical Behavior Annex). First, the formal syntax of HBA 
is given, and then we formally define the semantics of HBA. We 
propose a meta-model of HBA and implement its textual and 
graphical editor in the OSATE environment. Finally, an 
industrial case study is given to validate the approach. 

Keywords—safety-critical systems, AADL (architecture analysis 
and design language), hierarchical behavior annex, functional 
specification 

I. INTRODUCTION  
Safety-Critical Systems are widely present in fields such as 

aerospace, communications, nuclear industry, and automotive 
electronics. As functional and non-functional requirements 
continue to be extended, it dramatically increases the 
complexity of the systems. How to design and implement 
high-quality, safety-critical real-time systems and effectively 
control development time and costs is a common challenge for 
both academia and industry. Recently, Model-Driven 
Development (MDD) has become an important method for the 

design and development of safety-critical systems [1].  
AADL (Architecture Analysis and Design Language) [2] [3] 

is both a textual and graphical language with component-
based modeling concepts specifically designed to represent 
embedded software systems. AADL provides data and 
subprogram components organized into packages to abstractly 
represent application source code that is implemented in any 
programming language (such as Java, C, or Ada) or in an 
application design language (such as Simulink for control 
system components). AADL provides thread, thread groups, 
and process to represent concurrent tasks executing in 
protected address spaces (time and space partitioning) and 
interacting through ports, shared data components, and service 
call to represent the software runtime architecture. The 
dynamic of the runtime architecture are captured through 
mode state machines at different levels of the component 
hierarchy to present operational modes, dynamic changes to 
fault-tolerant configurations, and component behavior. In 
addition, the AADL standard provides well-defined execution 
semantics for task execution, communication timing, and 
mode changes using hybrid automata specification to address 
predictable response times [4]. 

The AADL behavior annex [5] proposed in 2006, is an 
extension of AADL to offer a way to specify the behaviors of 
components without expressing them with the target language, 
therefore it can support more precise behavioral and timing 
analysis [6]. The Behavior Annex enhances AADL's ability to 
describe the functional behavior of components such as thread 
and subprogram, in the form of a transition system [7]. The 
execution model defines when the Behavior Annex is executed 
and which data is exchanged, while the Behavior Annex is 
located within the component and gives a more accurate 
description of the execution of components. 

However, industrial complex systems are always described 
with concurrent and composite states which make easier the 
modeling of complex behaviors. If the nested state machines 



are unfolded, a huge and unmanageable state machine diagram 
will be formed. Although we can model a system with 
AADL’s own hierarchical description capabilities, it will result 
in a large amount of threads. Therefore, it is a very important 
feature for the AADL behavior annex to express the functional 
behavior hierarchically. 

We know, the flattened model can hardly manage a large 
number of states or actions and lose structural information. In 
order to solve this problem, the UML State Charts was 
proposed [8]. The UML state charts consist of a set of finite 
state machines containing locations and edges. The state 
machine can be embedded in a given location. Locations can 
be "AND-locations" or "XOR-locations". The automata 
embedded in "AND-locations" are independent of each other, 
and they are executed in parallel. The automata embedded in 
the "XOR-locations" can form a connected graph. In addition, 
David A. et al. proposed HTA [9] (Hierarchical Timed 
Automata) which is used to facilitate the hierarchical 
modeling in UPPAAL. In addition, Ricardo Bedin et al. 
evaluated the AADL Behavior Annex with a reengineering 
experiment of a flight-control software and introduced the 
hierarchical concept in AADL Behavior Annex. However, they 
haven’t given formal syntax and semantics definitions, and the 
implementation. 

In this paper, we propose a hierarchical extension of AADL 
behavior annex named HBA (Hierarchical Behavior Annex). 
Then, we give the formal syntax and semantics definition of 
the HBA. In order to implement HBA, we define the meta-
model extension of AADL behavior annex. Furthermore, the 
plugin of HBA is integrated into the AADL open source 
environment OSATE (Open Source AADL Tool Environment). 
Finally, we present an actual industrial case using the HBA. 

Moreover, as shown in Figure 1, we give a global view of 
our AADL-based development approach adapted to China 
industry. Firstly, a Restricted Natural Language (RNL) 
requirements modeling method and its automatic 
transformation into AADL models were proposed [10]. The 
internal behaviors in the generated initial AADL model (M0) 
may be not so precise, thus there will be a refinement process 
which may include several steps. For instance, we can use 
behavior annex or hierarchical behavior annex to refine the 
internal behaviors of a thread, or several threads will be 
combined into one thread with a hierarchical behavior annex. 
Therefore, a relatively complete platform-independent model 
M1 (PIM) will be obtained. In the second refinement, 
designers add platform-specific details to the model such as 
operational system API, interruption, pipeline communication, 
watchdog, hardware protocol, etc., and obtain the platform-
specific model M2 (PSM). Moreover, the AADL models 
should be formally verified. We use Timed Abstract State 
Machine (TASM) and UPPAAL to verify the individual 
properties of each component [11], the compositional 
verification tool AGREE [12] to verify the system properties 
of the hierarchical components, the Cheddar [13] tool to verify 
the schedulability of the system. Finally, the executable C and 
Ada code will be generated. We also consider how to relate 
different stages together seamlessly by requirement 

traceability [14], and the proof of semantics preservation [11].  
 

 

Fig. 1. Global view of an AADL-based development 

The rest of the paper is structured as follows. Section II 
gives an introduction to AADL and Behavior Annex. Section 
III gives the syntax of the HBA. Section IV defines the formal 
semantics of the HBA. Section V presents the implementation 
of the hierarchical extension of AADL Behavior Annex. 
Section VI presents an industrial case study. Section VII 
discusses the related work. Section VIII draws conclusions 
and future work. 

II. AADL AND ITS BEHAVIOR ANNEX 

A. The AADL Language 
AADL (Architecture Analysis and Design Language) is 

designed for the specification, analysis, automated integration 
and code generation of real-time performance-critical (timing, 
safety, schedulability, fault tolerance, security, etc.) distributed 
systems. It enables the development of highly evolvable 
systems, early and quantitative analyses of a system's 
architecture, and evolution of an architecture model for 
continued analysis throughout the lifecycle. 

AADL employs formal modeling concepts for the 
description of software/hardware architecture and 
nonfunctional properties of embedded real-time systems in 
terms of distinct components and their interactions. AADL 
offers a set of predefined component categories [2] [3]. 

� Thread, thread group, subprogram, data and process. 
� Processor, memory, bus and device. 
� System represents composite sets of software and 

execution platform components. 
For instance, a thread represents a sequential flow of 

execution and it is the only AADL component that can be 
scheduled. A subprogram represents a piece of code that can 
be called by a thread or another subprogram. 

Communication between components can be realized 
through dataflow, call to server subprogram or access to 
shared variable. These various connection points are declared 



in the interface of the communicating components and are 
called features. They will be Ports, Server Subprograms or 
Data Access depending on the chosen communication 
paradigm [6]. 

System behaviors do not only rely on the architecture 
defined by such above components and their connections but 
also rely on the runtime environment [11]. AADL standard 
has specified execution model as a virtual runtime 
environment, which contains synchronous as well as 
asynchronous patterns, to support the execution and 
management of components. Timing aspects such as deadline, 
dispatch time, are also defined in the execution model, 
declared through AADL properties. 

Moreover, AADL supports two ways of extension: property 
set and annex. The property set allows users to introduce new 
property sets. For example, Cheddar, the scheduling analysis 
tool, enhances AADL to support more complex scheduling 
algorithms by defining new property sets. Existing annexes 
include: AADL Error-Model Annex [15], AADL Behavior 
Annex [5], ARINC653 Annex, Data-Model Annex, etc. 

B. AADL Behavior Annex 
Behavior annex lies in the computing state, is an extension 

of the dispatch mechanism of execution model, to describe 
more precisely the behaviors such as port communication, 
subprogram call, timing, asynchronous, etc. The AADL 
execution model specifies when the behavior annex is 
executed and on which data it is executed. A full AADL 
model should contain well-defined structure, execution model 
and behavior annex. Now, a behavior annex can be attached to 
any component of AADL. It is described using an extension of 
AADL mode automata [5]: initial to specify a start state, 
return to specify the end of a subprogram or complete to 
specify completion of a thread, transitions may be guarded by 
conditions and actions, conditions and actions include sending 
or receiving events, calling or executing subprograms, 
assigning or testing data variables as well as execution 
abstractions such as use of CPU time or delay.  

The behavior annex mainly includes three parts: Variables, 
States, and Transitions. The variable part declares all the local 
variables used in the current behavior annex. The local 
variables can be used to save intermediate results within the 
scope of the current behavior annex. The state part enumerates 
the states of the machine with their properties (Initial, 
Complete, Final, or a combination of them). By default, a state 
is an execution state. The Behavior annex starts in the initial 
state and terminates in the complete state, waiting for the next 
dispatch of a thread, or in the final state. Transitions define the 
transitions from a source state to a destination state. A 
transition has also a guard, and an action. 

In the case of subprograms, the automaton consists of one 
initial state representing the starting point of a call, zero or 
more intermediate execution states, and one final state. A final 
state represents the completion of a call. The complete state is 
not used in behavior specifications of subprograms. 

In the case of threads and devices, the automaton consists of 
one initial state representing the state before initialization 
actions, one or more complete states, zero or more 

intermediate execution states, and one or several final states. 
A complete state acts as a suspend/resume state out of which 
threads and devices are dispatched. The final state represents 
the state when a thread or device completes finalization. 

Here, we give an example of the behavior annex of a thread 
as follows. 
thread implementation example.impl 
 annex behavior_specification{** 
variables 
 a : Base_Types :: Integer; 
 has : Base_Types :: Boolean; 
states 
 s1 : initial complete state ; 
 s2 :  state ; 
 s3 : state ; 
 s4 : complete state; 
transitions 
  T_0 : s1 -[on dispatch p]->s2{has:=true}; 
  T_1 : s2 -[has = true]-> s3; 
  T_2 : s2 -[ has = false]-> s4{a:= a+1}; 
**}; 
end example.impl;

III. HIERARCHICAL BEHAVIOR ANNEX HBA SYNTAX 
The HBA extends the AADL behavior annex to enhance the 

hierarchical description capabilities of the behavior annex. 
The HBA retains the variables, states and transitions of the 
AADL behavior annex, and adds hierarchical mapping 
functions and hierarchical states. 

Definition1 (Hierarchical Behavior Annex (HBA)) A 
hierarchical behavior annex is a tuple <Var, S, S0, �, T, type >, 
where: 

� Var  is a finite set of variables. 
� S  is a finite set of states. 
� 0S S⊆  is a set of initial states. 
� : 2SSη →  is a hierarchical function, it maps S to the 

sub-states of S .The mapping η is required to give 
rise to a tree structure where a special super-state 
root S∈  is the root of the tree. We useη  to record 
the hierarchical relationship between a state S  and 
its sub-states.  

� { }type : , , , , ,S AND XOR BASIC ENTRY EXIT HISTORY→ , it 
enumerates all the types of states. Composite states 
can be AND or XOR type and the type of non-
composite states is one of  BASIC, ENTRY, EXIT, 
or HISTORY.  

The AND state indicates that all the sub-states of the 
composite state are executed concurrently, which means, 
when the parent state is executed its internal sub-states are 
simultaneously executed from their respective initial states. In 
the subsequent HBA implementation, we represent the AND 
state as concurrent state. XOR indicates that all the sub-states 
in the composite state are mutually exclusive, which means, 
one and only one sub-state is executed at a time. In the 
subsequent HBA implementation, we represent the XOR state 
as composite state. 

The BASIC state includes the initial state, the complete 
state, and the final state, which are present in the AADL 
behavior annex. The AND, XOR, ENTRY, EXIT, and 
HISTORY states are new state types defined for the HBA. 
The ENTRY state indicates that the non-composite state is the 



entrance state of its parent state, which means, when entering 
its parent state, it enters the sub-state by default. The EXIT 
state is the out state for the corresponding non-composite 
state, which means that when the parent state transits to next 
state, the transition from this exit state to the next state is 
actually performed. The HISTORY state is a pseudo-state 
whose purpose is to remember the sub-state in which it exited 
from the combined state. When entering the composite state 
again, this sub-state can be entered directly instead of starting 
from the ENTRY state of the combined state again. 

� ( )T s Guard Action s⊆ × × ×  is the set of transitions. A 
transition connects two states s   and s′ , and it has a 
guard and an action. s  is called the source state and 
s′  is called the target state. We use the notion 

,ags s′⎯⎯→  for this and omit g, a, when they are absent. 
When the transition is completed, actions will be 
performed. 

Here we give an example as shown in Figure 2. In this 
figure, Fig 2(a) depicts a state chart graphically and Fig 2(b) 
shows its tree representation. Figure 3 shows the state diagram 
in the corresponding AADL behavior annex code. We note 
that state A is an AND state, and that ENTRY and EXIT states 
do not appear in the tree representation. 

F G H

I J

B C

A D

E

t1

t2

t3

t4

t5 t6

Root

A B C

D E

F G H I J

(a) (b)  
Fig. 2. The syntax of HBA 

annex behavior_specification{** 
 states 
   A : initial concurrent state ; 
   B : state ; 
   C : final state ; 
  transitions 
   t5 : A-[]->B; 
   t6 : B-[]->C; 
  concurrent state A 
   composite state D 
   states 

F : state; 
                 G : state ; 
  H : state ; 
 transitions 
  t1 : F-[]->G; 
  t2 : G-[]->F; 
  t3 : G-[]->H; 
   end D; 
   composite state E 
   variables 
    x : Base_Types::Integer; 
   states 
    I : state ; 
  J : state ; 
 transitions 
  t4 : I-[x > 0]->J{x := x+1}; 
   end E; 
end A; 
**}; 

Fig. 3. Textual representation of the HBA example 

In the following paragraphs, we will give the state 
constraints, and we first present the syntactic conventions.  
Syntactic Conventions: 

For { }, , , , , ,TYPE AND XOR BASIC ENTRY EXIT HISTORY s S∈ ∈ , we 
use the predicate notation ( )TYPE s .  For example, ( )AND s  is 
true when ( )TYPE s AND=  . 

The type HISTORY is a special case of an entry, we 
use ( )HEntry s  to capture simple entry or history entry. When 
HISTORY exist ( ) ( )ntry =HE s Histroy s ,otherwise ( )HEntry s  is the 
default ENTRY state of s . 

We define the parent function 1η − : 

( ) {-1 , s (b) if s root= b whereS otherwise
ηη  ∈   ≠

⊥                            

So, we define the grandparent function -2η : 
( )-2 1 1= , a, a and a sS b where bη η η− −∃  = ( )  = ( )  

Then, we give a set of constraints to ensure consistency of 
an HBA: 

State Constraints: 
� Only composite state contains other states: 

( ) ( ) ( )AND s XOR s sη∨ ⇔ ≠ ∅   
� Sub-states of AND composite states are not of a basic 

type: 
( ) ( ) ( )AND s b s Basic bη∧ ∈ � ¬  

� There is one initial location per XOR composite state: 
( ) ( ) 0 1XOR s s Sη� =�   

� There is only a single history state for each 
submachine. 

� All the sub-states of an AND states must be an XOR 
type. 

� The syntax does not support directly edges to a 
composite state such as AND or XOR state. A 
transition having a composite state as target 
corresponds to its default entry. The default entry is 
connected to the initial location of the given 
composite state. For transitions having a composite 
state as source, this is the same as having the source 
being a default exit connected to all internal states. 
The legal transitions are given in Fig 4 and Table I, 
where the black solid point represents the ENTRY or 
EXIT states and the white hollow point represents a 
basic state.  The transitions cannot go directly from 
an ENTRY state to an EXIT state. 

Internal transition

Hierarchical transitions

Entering transitions

Exiting transitions  
Fig. 4.  Legal transitions 

 



TABLE I.  Legal transition Example 
Transition 

types 
s  s′  Constraint

Internal BASIC 
BASIC 
HEntry 

BASIC 
EXIT 

BASIC 

( ) ( )1 1s sη η− − ′=  

Entering BASIC 
HEntry 

HEntry 
HEntry 

( ) ( )1 2s sη η− − ′=  

Exiting EXIT 
EXIT 

BASIC 
EXIT 

( ) ( )2 1s sη η− − ′=  

Changing EXIT HEntry ( ) ( )2 2s sη η− − ′=  

IV. HIERARCHICAL BEHAVIOR ANNEX(HBA) SEMANTICS 
We define the operational semantics of the HBA formalism. 

Legal steps between states of an HBA define a set of traces. A 
state captures a snapshot of the system, i.e., the active states, 
the integer variable values, and the history of some super-
states.  

Definition 2 (States) States are of the form ( ), ,ρ μ θ , where:
� : 2SSρ →  is a mapping function that gives the set of 

active states. ρ  can be understood as a dynamic 
version of η  that maps every super-state S . If a 
super-state S  is not active, then ( )Sρ = ∅ . We 
define ( )*(S) SActive rootρ= ∈ , where *(S)ρ  is the set of 
all active sub-states of S including S, We note that 
for S root≠ : 1(S) S ( (S))Active ρ η −⇔ ∈ , where ( )-1 Sη  is the 
parent state of S. 

� :Varμ → �  maps variables to their values. If 
(S)Active¬ , then for (S)Varν ∈ , ( )μ ν  is undefined: we 

note (v)μ =⊥ . 
� : S Sθ → returns the last visited sub-state of S or an 

entry of the sub-state in the case where the sub-state 
is not basic. If the exiting state is a BASIC state of 
the composite state, (S)θ  returns the BASIC state; 
otherwise, it returns the ENTRY state of the 
composite. 

History state: We capture the existence of a history entry 
with the predicate as (S) (S). HISTORY(b)H History b η= ∃ ∈  . If 

as istory(S)H H  holds, the term ntry(S)HE  denotes the unique 
history entry of S. If ntry(S)HE  does not holds, the term 

ntry(S)HE denotes the default entry of S. If S is a BASIC state, 
then ntry(S)=SHE . If none of the above is the case, then 

ntry(S)HE  is undefined. 
Definition3 (Internal Transition) We define the internal 

transformation for transformations that the source state and 
destination state are within the same composite state. The 
value of variables will be update to V2 from V1 by the action 
a. 

1 1

,
1 2

(S) (S ), _
(S, V ) (S , V )g a

g true simple transitionη η− − ′= =
′⎯⎯→

  

In order to describe the transitions that across the composite 
state boundary, we define the Entering transition and Exiting 
transition. 

For each composite state, there is a default entry state and a 
default exit state. When a transition takes the external state as 
the source and takes the internal state as the destination, it 
needs to use the entering transition. 

-1 2
1 1

,
1 1

-1 1
1 1

1 1 1

,
1

(S) (S ), ENTRY(S ) true,g true 1
( , ) ( , )

(S ) (S ), ENTRY(S ) true 2
( , ) ( , )

1 2 _
( , V) ( , )

g a

g a

ent
S V S V

ent
S V S V

ent ent Entering transition
S S V

ε

η η

η η

−

−

= = =
⎯⎯→

′= =
′⎯⎯→

′⎯⎯→
�

 

As the Entering transitions that we can see in Figure 4, the 
parent state of the source state (i.e. -1(S)η ) and the grandparent 
state of the destination state (i.e. 2

1(S )η − ) is the same state. 
Since the source state type is not fixed, we do not constrain 
the source state. The entry transition is divided into two steps: 
1) the transition from the external state to the Entry (i.e. S1) of 
the composite state, and 2) the transition from the entry state 
to the destination. 

When a transition takes the internal state as the source and 
takes the external state as the destination, it needs to use the 
exiting transition. 

-1 1
1 1

1

-2 1
1 1

,
1 1

,
1

(S) (S ), (S ) true 1
( , ) ( , )

(S ) (S ), EXIT(S ) true,g true 2
( , ) ( , )

1 2 _
( , V) ( , )

g a

g a

EXIT ext
S V S V

ext
S V S V

ext ext Exiting transition
S S V

ε
η η

η η

−

−

= =
⎯⎯→

′= = =
′⎯⎯→

′⎯⎯→
�

 

The Exiting transition is similar to the Entering transition, 
but the grandparent state of the source state (i.e. -2

1(S )η ) and the 
parent state of the destination state (i.e. 1(S )η − ′ ) is the same 
state. The exit transition is divided into two steps: 1) the 
transition from the source state to the Exit (i.e. S1) of the 
composite state, and 2) the transition from the exit state to the 
destination. 

Definition4 (Hierarchical Transition) Hierarchical 
transition ,aHT : gS S ′⎯⎯→  is a transition exits from a composite 
state and enters another composite one, as show in Fig 4, 
including three steps: (1) executing an exiting transition to exit 
the super-state of S , (2) taking the transition HT itself, and (3) 
executing an entering transition to enter the super-state of S′ . 
Together, 1-3 define a hierarchical transition.  

 

-1 1
1 1

1

-2 2
1 2 1 2

,
1 2 1

-1 1
2 2

2 1 1

,
1

(S) (S ), (S ) true 1
( , ) ( , )

(S ) (S ), EXIT(S ) true, ENTRY(S ) true,g true 2
( , ) ( , )

(S ) (S ), ENTRY(S ) true 3
( , ) ( , )

1 2 3
( , V) ( , )

g a

g a

EXIT ht
S V S V

ht
S V S V

ht
S V S V

ht ht ht H
S S V

ε

ε

η η

η η

η η

−

−

−

= =
⎯⎯→

= = = =
⎯⎯→

′= =
′⎯⎯→

′⎯⎯→
� � _ierarchical transition

 

We use the HT  to present the hierarchical transition. So, 
after the hierarchical transition, we can get ( )1, 1 1,ρ μ θ : 

{ }1= | , HT( )x b b xρ ρ∀ ∈ =  



{ }1= | , HT(v)vμ θ μ θ∀ ∈ =  
1 ( )HISTORYθ θ=   

Definition5 (State transformation) We define the state 
transformation Tst : 

( ) ( )1 1 1, , , ,Tst ρ μ θ ρ μ θ=  
Each system snapshot consists of three parts: ρ , μ , and θ . 

After a state transition, the snapshot will be updated to 1ρ , 1μ , 
and 1θ . 

Remark 1: Synchronization usually involves a sender and a 
receiver and data change. Moreover action sending and 
receiving can be guarded. Since in AADL, we have global 
variables, one can define many semantics for such a 
synchronization. Since, we have adopted UPPAAL as a 
verification engine, we use the UPPAAL semantics for the 
basic synchronization and exchange data through global 
variables. 

V. THE IMPLEMENTATION OF HIERARCHICAL BEHAVIOR ANNEX 
In the implementation, in order to identify the extended 

syntax, we use ANTLR (ANother Tool for Language 
Recognition) technology to generate an Abstract Syntax Tree 
(AST). The input language of ANTLR is very similar to the 
BNF form, so we give the BNF description of the HBA. In 
addition, we use the EMF and the Xtext technologies to 
extend hierarchical elements in the meta-model of behavioral 
annex. The meta-model is one of the inputs of the EMF, so we 
give the meta-model extension of the HBA. 

A. Extension of the AADL Behavior Annex BNF 
It shows the original AADL behavior annex concrete syntax 

(part) and the extended AADL behavior annex concrete syntax 
(part) in Figure 5 and Figure 6 respectively. We have added the 
concept of composite states and the expression of inline sub-
states in composite states. 
behavior_annex ::= 

[ variables { behavior_variable }+ ] 
[ states { behavior_state }+ ] 
[ transitions { behavior_transition }+ ] 

behavior_state ::= 
behavior_state_identifier { , behavior_state_identifier }* :  behavior_state_kind 

state; 
behavior_state_kind ::= [ initial ][ complete ][ final ] 

behavior_transition ::= 
  [transition_identifier [ [behavior_transition_priority] ] : ] source_state_dientifier 
{,source_state_identifier}* 

-[behavior_condition]-> destination_state_identifier[{behavior_actions} 
[timeout behavior_time]] 
Behavior condition ::= dispatch condition | execute condition 

Fig. 5. Original AADL behavior annex syntax (part) 

behavior_annex ::= 
[ variables { behavior_variable }+ ] 
[ states { behavior_state }+ ] 
[ transitions { behavior_transition }+ ] 
{concurrent concurrent_state}* 
{composite composite_state}* 

behavior_state ::= 
behavior_state_identifier { , behavior_state_identifier }* :  behavior_state_kind 

state; 
behavior_state_kind ::= [ initial ][ complete ][ final ] [composite] [concurrent] 

[history] [entry] [exit] 
behavior_transition ::= 
  [transition_identifier [ [behavior_transition_priority] ] : ] source_state_dientifier 
{,source state identifier}* 

-[behavior_condition]-> destination_state_identifier[{behavior_actions} 
[timeout behavior_time]] 
Behavior_condition ::= dispatch_condition | execute_condition 
concurrent_state ::= 

state behavior_state_identifier 
{composite composite_state}+ 

end behavior_state_identifier; 
composite_state ::= 

state behavior_state_identifier 
[ variables { behavior_variable }+ ] 
[ states { behavior_state }+ ] 
[ transitions { behavior_transition }+ ] 
{concurrent concurrent_state}* 
{ composite composite_state}* 

end behavior_state_identifier; 

Fig. 6. The extended AADL behavior annex syntax (part) 

B. Extension of the AADL Behavior Annex meta-model 
The AADL behavior annex is closely related to the AADL 

core, so the AADL behavior annex meta-model reuses the 
AADL meta-model's EMF framework and is designed on this 
basis. On the one hand, this aspect facilitates the integration of 
AADL-BA in OSATE2. On the other hand, using the same 
form to formulate two meta-models can simplify the 
expression of object dependencies and simplify the model 
connection between them. 

The behavior annex requires to attach a behavior 
specification to an AADL component and to link AADL-BA 
objects with AADL objects. It is reinforced by the 
implementation of the OSATE2 sub-language extension which 
requires linking a BehaviorAnnex object to the 
AnnexSubclause object of the AADL component. 

We show the dependency between two meta-models 
expressed through EMF extensions (e.g. Java's inheritance 
mechanism) in Figure 7. As we can see, a BehaviorAnnex 
extends an AnnexSubclause, and a BAElement extends an 
Element. The latter simplifies the link from the AADL-BA 
model to the AADL model by referencing the AADL objects in 
the behavior specification and easily retrieving the 
corresponding AADL objects during the analysis. 

ElementAnnexSubclause

BAElementBehaviorAnnex

AnnexSubclause
Java class

BehaviorAnnex
Java class

EMF/GenMode
l

EMF/GenMode
l

extends

 

Fig. 7.  AADL-BA Meta-model dependency 

In order to extend the AADL behavior annex, we first 
extend the AADL meta-model to increase the expression 
of concurrent states and compound states (See bold part in 
Figure 8). 



BehaviorAnnex

BehaviorVarilable BehaviorState BehaviorTransition ConcurrentState CompositeState

BehaviorCondition BehaviorAction

ExecuteCondition DispatchCondition

[1..*]behaviorVariables

[1..*]behaviorStates

[1..*]behaviorTransitions

[0..1]behaviorCondition [0..1]behaviorAction

[1..*]concurrentStates
[1..*]compositeStates

[2..*]compositeStates

 

Fig. 8. The extended AADL behavior annex meta-model (part) 

As we can see in Fig.8, the main difference between the 
extended hierarchical behavior annex and the AADL behavior 
annex is the addition of Composite State and Concurrent Sate. 
In addition, in order to comply with the aforementioned 
constraints, we have correspondingly added state types such as 
entry state and exit state. 

C. Java code generation with ANTLR and Xtext 
ANTLR is a powerful parser generator for reading, 

processing, executing, or translating structured text or binary 
files. It's widely used to build languages, tools, and 
frameworks. From a grammar, ANTLR generates a parser that 
can build and walk parse trees. 

Xtext is a framework for development of programming 
languages and domain-specific languages. With Xtext we can 
define our language using a powerful grammar language. As a 
result we get a full infrastructure, including parser, linker, type 
checker, and compiler as well as editing support for Eclipse.  

The syntax rules of ANTLR are similar to BNF, so we can 
quickly modify the ANTLR model with the previously 
proposed BNF syntax. The original ANTLR framework for 
behavioral annex can be found on GitHub. We use the 
methods of the AADL-HBA builder factory in the ANTLR 
grammar to specify how to build the abstract syntax tree (AST) 
with AADL-HBA objects. It ensures that the AST is compliant 
with the AADL-HBA meta-model. Finally we use the ANTLR 
framework to generate the Java classes of the parser and the 
lexer from the AADL-HBA BNF defined. 

Moreover, OSATE is an open source environment that 
provides supports for the development of architecture models 
for embedded real-time systems based on AADL, including 
modeling, compilation and analysis for AADL. OSATE not 
only provides a set of plug-ins (for validating models or 
interfacing them with other tools), but also provides an 
extensible framework for users to develop plug-ins for AADL 
models. OSATE is based on Eclipse and is constructed using 
Xtext, which supports the textual editor of AADL. Besides, 
AADL Behavior Annex plugin-in is also based on Xtext 
technology and the meta-model (a kind of input of Xtext) of 
AADL Behavior Annex can be download on the internet. Thus, 

we extend the meta-model of BA with the EBNF (section IV). 
AADL supports textual modeling and graphical modeling, 

while behavior annex does not support graphical display and 
modeling. In order to facilitate using HBA, we implement a 
graphic editor for the AADL behavior annex as a plugin, 
including graphical display and graphical modeling. 

VI. CASE STUDY 

A. LCS system 
The Launch Control System (LCS) is an important element 

of the Rocket Ground Test Launch Control System. It protects 
the equipment during rocket testing, and sets parameters and 
launch controls before firing. The mission of the LCS system 
is to receive commands from the command system, complete 
the test of the rocket on the launch vehicle at the launch site, 
conduct launch control and simulate rocket launches at the 
training. A simplified block diagram of the rocket LCS system 
is given Figure 9. 
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Fig. 9. Rocket launch control system 

In the requirement document, the LCS system is divided 
into five layers, such as driver, driver management, data 
processing, unit processing, and controller. There are 53 
functional modules in total. Each functional module contains a 
set of complex processing. 

Layer Functional Modules 
Driver 17 

Driver Management 10 
Data Processing 2 
Unit Processing 13 

Controller 11 
We have developed a tool [10] that can automatically 

generate AADL initial models from restricted natural 
language (RNL) requirements. We have already specified the 
requirements of LCS system in RNL, thus, an initial AADL 
model of the LCS system can be automatically generated. 
Here, we mainly focus on the refinement of the generated 
initial AADL models. Due to space limitations, we present the 
refinement of the Power Control Function in the Unit 
Processing Layer of the LCS system as a demonstration in this 
paper. 



B. Power Control Function 
1) Requirement 

There are 10 modules in the Power Control Function. In 
order to simplify the description, we only introduce several 
functional modules.  

The first module is Rocket Power-On 1(RPOn1). The 
purpose of this module is to check the rocket type 
identification code and launch platform self-check results. If 
the check result is fault, then the thread calls Rocket Power-
Off 1(RPOff1) module. If the check result is correct, the thread 
will call Rocket Power-On 2(RPOn2) module. The purpose of 
this module is to check the result of the rocket self-check. If 
the self-check result is fault, then the thread calls Rocket 
Power-Off 2(RPOff2) module, otherwise, the thread calls 
Rocket Power-On 3(RPOn3) module. The purpose of this 
module is to check the results of rocket power supply. If the 
check result is fault, then the thread calls Rocket Power-Off 
3(RPOff3) module, otherwise, the thread calls Open the Cover 
(OC) module. The functional behavior of Power Control 
Function is shown in Figure 10. 

RPOn1 RPOn2 RPOn2

RPOff1 RPOff2 RPOff3

OC
Result=correct Result=correct Result=correct

Result=fault Result=fault Result=fault

 
Fig. 10. The functional behavior of Power Control Function 

The above requirements are the architecture designed by the 
architects. They may not consider the internal processing 
details of each module. The internal details will be 
supplemented by the designer during the refinement phase. 

2) Modeling with BA 
Here behavior annex is used to present the first refined 

behaviors. The AADL code is given as follows: 
annex  behavior_specification{** 

states 
 RPOn1 : initial  state; 
 RPOn2 : state; 
 RPOn3 : state; 
 OC : state; 
 RPOff1 : state; 
 RPOff2 : state; 
 RPOff3 : state; 
 Omit : complete state; 

transitions 
 T1 : RPOn1 -[result1=correct]-> RPOn2; 
 T2 : RPOn1 -[result1=faulty]-> RPOff1{errMsg!(err1)}; 
 T3 : RPOn2 -[result2=correct]-> RPOn3; 
 T4 : RPOn2 -[result2=faulty]-> RPOff2{errMsg!(err2)}; 
 T5 : RPOn3 -[result3=correct]-> OC; 
 T6 : RPOn3 -[result3=faulty]-> RPOff3{errMsg!(err3)}; 
 T7 : OC -[]->Omit; 
**};  

The corresponding graphical effects in the above case are 
shown in Figure 11. 

 
Fig. 11. Power Control Function graphical display 

C. Refinement 
1) Requirement 

Here we only present the refinement of the Rocket Power-
On 1(RPOn1) module. In our AADL specification, there are 
three sub-modules in RPOn1: the Launch Platform Self-Check 
Module (LPSCM), the Rocket Type Check Module (RTCM), 
and Rocket Power-On Module (RPOM). The Launch Platform 
Self-Check Module checks the launch platform status and 
sends the check result to the Rocket Type Check Module. The 
Rocket Type Check Module confirms whether the rocket type 
is consistent with the required type and sends the confirmation 
result to the Rocket Power-On Module. The Rocket Power-On 
thread determines whether to power on the rocket. 

The Launch Platform Self-Check Module (LPSCM) is 
specified as an automaton which contains four main states: 
Platform Information Decoding State, Platform Self-Checking 
State, Normal State, and Error Report State. After the 
platform information is decoded, the automaton sends the 
platform description information, and then the automaton 
enters the Platform Self-Checking State. The Launch Platform 
Self-Checking State gives the self-check result. If the self-
check result is correct, the automata enters in the Normal 
State, and the self-check result message is sent to the Rocket 
Type Check Module (MTCM) through the port; otherwise, an 
Error Report State is entered. The errorReport state includes 
four sub-states: IO Port Power off (P), Set Flag (S), Report 
Error Message (R) and Update Rocket Configuration (U). The 
inner execution of errorReport state is sequential. After 
cutting the power, the automaton enters the Set Flag State. 
Then the automaton set the flag to fault. In the end, the 
automaton updates the configuration information of the rocket. 

The functional behavior of the Rocket Type Check Moudle 
(RTCM) is presented as an automaton which includes four 
major states: Self-Check Result Decoding State, Rocket Type 
Identification State, Type Correctness State, and Error Report 
State. After receiving the platform self-check result message, 
the automaton enters the Rocket Type Identification State. The 
Rocket Type Identification State confirms that the type of 
rocket is consistent with the type required. If the rocket type is 
correct, the automata enters the Type Correctness State and 
sends the confirm result message to the Rocket Power-On 
Module (RPOM) through the port; otherwise, the automaton 



enters the Error Report State. The state of the Error Report is 
the same as described as above. 

The functional behavior of the Rocket Power-On Module 
(RPOM) is described by an automaton which includes two 
main states: Rocket Power-On and Power-On Report. After 
receiving the recognition result message, the automaton enters 
the Rocket Power-On State. After the completion of power-on, 
the automaton enters the Power-On Report State. 

The functional behavior of RPOn1 is shown in Figure 12. 
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Fig. 12. The functional behavior of  RPOn1 

2) Modeling with HBA 
Here, we take the functional behavior of the Launch 

Platform Self-Check Module (LPSCT) as example, which 
includes 4 states and 3 transitions. The errorReport state is a 
composite state, it includes 4 sub-states. There is also an 
automaton in the composite state errorReport. The AADL 
code is given as follows: 
 annex  behavior_specification{** 
 states 
       RPOn1 : initial  state; 
       RPOn2 : state; 
       RPOn3 : state; 
       OC : state; 
       RPOff1 : state; 
       RPOff2 : state; 
       RPOff3 : state; 
       Omit : complete state; 
 transitions 
       T1 : RPOn1 -[result1=correct]-> RPOn2; 
       T2 : RPOn1 -[result1=faulty]-> RPOff1{errMsg!(err1)}; 
       T3 : RPOn2 -[result2=correct]-> RPOn3; 
       T4 : RPOn2 -[result2=faulty]-> RPOff2{errMsg!(err2)}; 
       T5 : RPOn3 -[result3=correct]-> OC; 
       T6 : RPOn3 -[result3=faulty]-> RPOff3{errMsg!(err3)}; 
       T7 : OC -[]->Omit; 
 composite state RPOn1 
 states 
       LPSCM : initial complete state ; 
       RTCstate : state ; 
       RPOstate : complete state ; 
 transitions 
         T8 : LPSCM -[on dispatch]-> 

RTCstate{selfCheckResult!(PlatformCheckResult)}; 
         T9 : RTCstate -[]-> RPOstate{confirmPort!(confirmResult)}; 
 --composite state LPSCM   
 composite state LPSCM 
                      variables 
       checkResult : Base_Types::Boolean; 
   states 
       decode : initial state; 
       selfCheckState :  state; 
       OK : complete state; 
       errorReport :  complete state; 
 transitions 
       T10 : decode -[ ]-> selfCheckState{platformInfoPort!(pdMsg)}; 
       T11 : selfCheckState -[result = true]-> OK{checkResult:=true; 

selfCheckResult!(checkResult)}; 
       T12 :  selfCheckState -[result = false]-> errorReport{ 

checkResult:=false;selfCheckResult!(checkResult)}; 
 composite state errorReport 
 states 
       powerOff : initial state; 

     setFlag : state;
       reportBack : state; 
       update : complete state; 
 transitions 
       T13 : powerOff -[ ]-> setFlag{power := cutOff}; 
       T14 : setFlag -[]-> reportBack{flag := fault}; 
       T15 : reportBack -[]-> update {platformInfoPort!(configInfo)} 
 end errorReport; 
 end LPSCM; 

--end composite state 
 end RPOn1; 

**};
The corresponding graphical modeling is shown in Figure 

13, 14 and 15. 
When we double-click the RPOn1 state in Figure 11, we 

can see the automaton shown in Figure 13. The Fig13 shows 
the graph of the Rocket Power-On 1(RPOn1) Module. Figure 
14 shows the graph of the Launch Platform Self-Check 
Module, in which errorReport state is a composite state. After 
double-clicking the errorReport state, the internal rendering is 
shown in Figure 15. 

 

 
Fig. 13. RPOn1 state graphical display 

 
Fig. 14. Graphical representation of LPSCM state 

 
Fig. 15. Internal structure of errorReport state  

D. Lesson learned 
During the collaboration with our industrial partner for 

devising the methodology and conducting the industrial case 



study, we learned the following lessons in real industrial 
contexts. 
� The ability to describe hierarchically is very important. 

Due to the large scale of actual industrial projects and the 
large amount of background knowledge required, the 
idea of layer-by-layer refinement goes through the entire 
development life cycle. Thanks to the idea of layering, 
designers at each level can focus on the work within their 
domain knowledge. 

� When communicating with engineers, they found it hard 
to accept such semi-formal modeling languages like 
AADL. Instead, they are more willing to accept graphical 
modeling or pseudo-code formative languages. Therefore, 
a more vivid expression will be more easily accepted by 
engineers. 

VII. RELATED WORK 
In terms of hierarchical extension, Harel et.al [16] presented 

an extension of the conventional formalism of state machines 
and state diagrams. The statecharts extend conventional state-
transition diagrams with essentially three elements, dealing, 
respectively, with the notions of hierarchy, concurrency and 
communication, solved the problems of large-scale state-
machines with the deep level nesting of complex system, but 
the real-time description of embedded safety-critical software 
is still lacking. In order to solve the problem that the timed 
automata cannot describe hierarchical models, David et.al [17] 
proposed the concept of Hierarchical Timed Automata (HTA) 
and solved the complex hierarchical system modeling and 
verification issues by extending timed automata. HTA can 
model hierarchical systems and verify their temporal 
properties, but it needs to transform the model to the 
automaton form manually, which increases the complexity of 
the work. 

In terms of formal syntax and semantics, the hierarchical 
extended HTA formal syntax and operational semantics was 
given in [17], and a simplified HTA model had been given. 
Yang et.al. [6] defined the formal semantics of the AADL 
behavior annex through the timed abstract state machine 
(TASM) and proposed a real-time behavioral modeling and 
verification prototype. Zhou et.al. [18] gave the underlying 
semantics of the UML state machine diagram and the time-
dependent modeling elements of MARTE, the configuration 
files for real-time embedded system modeling and analysis, 
and proposed the formalization of its operational semantics 
based on extended hierarchical timed-automata. Ölveczky P.C. 
et.al. [19] presented a formal real-time rewriting logic 
semantics for a behavioral subset of AADL which includes the 
essential aspects of its behavior annex. This semantics is 
directly executable in Real-Time Maude. In order to support 
unambiguous reasoning, formal verification, high-fidelity 
simulation of architecture specifications in a model-based 
AADL design workflow, Besnard L et.al. [20] defined a 
formal semantics for the behavior specification of the AADL. 
Larson et.al. [21] presented the Behavioral Language for 
Embedded Systems with Software (BLESS), a behavioral 
interface specification language and proof environment for 

AADL.  BLESS provided a formal semantics for AADL 
behavioral descriptions and automatic generation of 
verification conditions that, when proven by the BLESS proof 
tool, establish that behavioral descriptions conform to AADL 
contracts. Ehsan Ahmad et.al. [22] presented formal semantics 
of the synchronous subset of AADL models annotated with 
Hybrid Annex specifications using HCSP. The semantics was 
then used to verify the correctness of AADL models (with 
Hybrid Annex specifications) using an in-house developed 
theorem prover -- Hybrid Hoare Logic (HHL) prover. In order 
to support unambiguous reasoning, formal verification, high-
fidelity simulation of architecture specifications in a model-
based AADL design workflow, Besnard et al. [23] had defined 
a formal semantics for the behavior specification of the AADL. 
Johnsen et.al. [24] formalized a subset of AADL-core and 
transformed it to UPPAAL's input language, the Timed 
Automata (TA). They gave a formal semantics definition of 
the AADL subset by mapping the AADL subset to timed 
automata through a semantically anchored method. Franca R 
B et.al.[25] respectively evaluated the practicality of AADL-
BA through actual engineering projects, analyzed the 
constraints of AADL-BA, and proposed the idea of 
hierarchical extension of the behavioral annex, but did not 
give a formal definition and implementation. 

VIII. CONCLUSION AND FUTURE WORK 
It is a very important feature to express concurrent and 

composite states in safety-critical systems. Although we can 
model a system with AADL’s own hierarchical description 
capabilities, it will result in a large amount of threads. 
Moreover, in actual development, a refinement process is 
always needed before system synthesis, in which several 
threads will be combined into one thread that has composite 
states. This paper proposes a hierarchical extension of AADL 
behavior annex named HBA (Hierarchical Behavior Annex). 
The formal syntax and the semantics of hierarchical 
behavioral annex are presented. In addition, through the 
extension of the AADL behavioral annex meta-model, based 
on EMF and Xtext technologies, the corresponding plug-ins 
are implemented on the AADL open source development 
environment OSATE. Finally, an industrial case study is given 
and evaluated. 

This paper presents the formal definition of the extended 
hierarchical behavioral automata, which supports the 
modeling of the behavior of complex embedded real-time 
systems. However, the work at this stage only stays in the 
modeling aspect, and there is still a lack of property 
verification capabilities for the model. We are currently 
working on the transformation from the hierarchical 
behavioral annex (HBA) to hierarchical timed automata 
(HTA) to verify time properties of complex embedded real-
time systems. In addition, in order to express both control 
flows and data flows in the functional behavior, we propose 
the co-modeling of synchronous language [26] (such as 
SIGNAL) and behavior annex (or hierarchical behavior annex) 
to describe the functional behaviors inside the AADL 
components.  
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